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ABSTRACT

- The evolution of a two dimensional, incompressible, rapidly decelerating, time-
dependent viscous flow about a sharp-edged camber is simulated through the use of the
discrete vortex model. Vorticity is represented by a distribution of discrete point
vortices. Each vortex is convected in the velocity field, calculated locally using the Biot-
Savart law. The roll-up of the vortex sheets, the distribution of velocity and pressure
on the camber, and the drag force are calculated at suitable time intervals for a
prescribed time-dependent flow. Experiments are carried out in a vertical water tunnei
partly to measure the drag force and partly to record on a video tape the evolution of
the wake. The measured and calculated characteristics of the flow, such as the growth
of the wake and the forces acting on the camber are found to be in good agreement.
Furtherinore, the numerical simulation provided a plausible explanation for the cause
of parachute collapse, a phenomenon which gave impetus to the numerical and
physical experiments described herein. The numerical model developed during the

course of the investigation is applicable to any time-dependent flow about two-
dimensional cambered plates (circular arcs ).
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I. INTRODUCTION

A.  SEPARATED FLOWS

The separated flow about bluff bodies has been almost completelv unyielding to
both analvsis and numerical simulation for a number of mathematical reasons and
rundamental fluid dynamic phenomena. Separation gives rise to the formation cf free
shear lavers which roll up into vortex rings or counter-rotating vortices. Thev. in turn,
interact with each other, with the counter-sign vorticity generated at the base of the
body, and with the mction of often unknown separation points. The wake becomes
unsteady even for a steady ambient flow and the problem of the determination of th
charactersstics of the wake becomes coupled to the conditions prevailing upstream of
the separation points. Evidently, viscosity modifies radically the inviscid flow. which.
in this case. cannot serve even as a first approximation to the actual flow. The
boundary laver equations are not applicable bevond the separation points and are,
therefore, of limited use in bluff-body flow problems.

The separated unsteady flow situations involving wake return, as in the case of a
decelerating or oscillating body. are an order of magnitude more complex than those
where the vertices continuously move away from the body. The net eflect of the wake
return is twofold. Firstly, the proximity of the large vortices dramatically affects the
coundary laver, outer flow. pressure distribution, and the generation and survival rate
of the new vorticity. Secondly. the vortices not onlyv give rise to additional separation
points and or additional vortices, but also strongly aflect the motion of the primarv
vortices. These effects are further compounded by the diffusion and decav of vortices
and by the three-dimensional nature of the flow.

The existing finite difference and [irite element methods cannot vet treat the high
Reynolds number flows with sufficient accuracy for a number of reasons. The finite
Julerence schemes require a very fine grid, a turbulence model, and a very large
cernputer memory. It scems that the modeliing of the turbulent stresses in the wake,
partcuwrly in time-dependent flows wiil be the major source of difficulty in al! future
calcuiations, Whether or not it will ever be practical to apply the finite difference and
Cnite clement methods to high Revnolds number flows is unknown. The inherent

Jidiculues are certaindy significant enough 1o warrant exploring other solution

metaous,
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Certain separated time-dependent flows may be simulated through the use of the
discrete vortex mcdel (DVM) (see e.g.,, Chorin 1973; Sarpkava 1975). The free shear
lavers which emanate from the sides of the body are represented by an assembly of
discrete vortices. The strength of the elemental vortices are determined through the use
of the Kutta condition. The use of a suitable convection scheme enables one to march
in time and to calculate the evolution of the wake, the velocity and pressure
distributions, and the lift and drag forces acting on the bodv. The work described
herein deals with the application of the DVM to decclerating flow about a two-

dimensional camber.

B. FLOW ABOUT A CAMBERED PLATE AND PARACHUTE COLLAPSE

The determination of the deployment sequence of an axisymmetric porous
parachute and the unsteady aerodynamic loads acting on it present a very complex
coupled problem. The development of an analytical or numerical model which takes
into account the effects of porosity, gaps, and variable opening schemes would allow
numerical experiments on a large class of parachutes, reduce the number of expensive
ficld tests to a few judiciously seclected ones, and enable the designer to calculate the
time history of the fail of the parachute and the strength required to survive the
acrodynamic loads. However, the development of such a model is hampered by a
number of difficulties.

The previous models for parachute loads are based by and large on empirical
assumptions (see e.g., Heinrich and Saari 1987; Mcwey 1972). They rely on the
cbservation that famulies of parachutes open in a characteristic length and seem to
nave acrodvnamic properties that relate well to the projected area of the parachute.
The apparent mass is assumed to be a function of the projected area only and is not a
function of the prevailing flow characteristics. The vortex sheet analysis was used by
Kiimas (1977) to derive the acceleration-independent apparent mass coefficient for
arbitrary-shaped axisymmetric surfaces. Muramoto and Garrard (1984) used a
continuous-source model to predict the steady-state drag of ribbon parachutes. The
analvses did not, however, deal with the evolution of the unstcady wake and its
interaction with the canopy.

Itis in view of the foregoing that a fundamental study of the separated timec-
dependent flow about two-dimensional rigid cambered plates was undertaken. Ciecarly,
the fiow about a rigid cambered plate is considerably simpler than that about a porous,

' \-'\.\.5"\." - -‘nyn\'y'-;l - -
\mmmmwmm




axisymmetric, and flexible parachute and the results, regardless of the degree of their
agreement with corresponding eXperiments, may not have direct relevance 10 the
practical problem under consideration. But the object of this investigation was the
understanding of the evolution of the wake under controlled conditions rather than to
provide a design tool. It is hoped that an investigation of this type will reveal the
underlving physics of the phenomeron (particularly that of the parachute collapse),
help to interpret the full-scale results and will provide inspiration for the development

of more general vortex models with which the dynamics of axisymmetric, porous, and
flexible parachute canopies can be investigated.
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ity II. ANALYSIS
‘.
U
:'.'c
' A, TRANSFORMATIONS AND THE COMPLEX VELOCITY POTENTIAL
: o The caleulaticn of the velocity of any one of the vortices and the force acting on {
t . - . . . N .
ot the Sody requires a conformal transformation (in which the camber becomes a circle), |
[}
f.:.,: a complex-veiocity potential representing the vortices, their images, and the two- |
¥, . . . . . - . ‘
dimensional urotational flow around the body, and the use of the generalized Blasius ‘
e thecrem. |
i . . ’
i The flow in the circle plane may be transformed to that about a cambered plate
L
oy throuzh the use or two successive transformations, one from § plane to the £° plane
and the other from the 5° plane to the z plane. These are given by (see Fig. 2.1)
A0
’ n*
SN a. & b.
X ] A A
RO /\
::::. u S - + P o
s
8
Bt .
{-plane {-plune
[}
M2
1200
»
g . y d | y i
! \
:: A G\q
L 2ib
)
t:;"" l/ <\
/ » X o > X
/
“ 2 Vi,
o . N g
T :.b o
rp

Figure 2.1 Circle and physical plancs
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b2
(- - % wmd 0= Gem @

Combining the two, one has a direct transformation from the { plane to the z
plane as

b2

z={+m - o m

It is easy to show that the camber in the z plane is a circular arc.

The y-axis in the z plane passes through the tips of the camber. It is
advantageous to locate the origin of the coordinate axes at the geometric center of the
camber. i.e., at the center of the circle part of which represents the camber. This is
easily accomplished by shifting the origin of the coordinate axes by

5
2m-—1

z = 2.3
° m (25)

where z " is the x coordinate of the origin of the circle in the z plane. Thus, one has

z=(+m — —
{+m

+z , withz = -z, 2.4)

which transforms the circle in Fig. 2.1a to the physical plane in Fig. 2.1d. Table 1
summarizes the relationship between m, 2z ’, the included angle of the camber, b, and
the radius of the camber.

TABLE 1
SUMMARY OF THE PARAMETRIC RELATIONSHIP

m zo' 2a b R=1/m
cos60 = .5 -1 120 366 2
cosds = 707 0. 180 .707 V2
cos30 = 866 1//3 240 5 2:J3
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The complex potential function W in the dircle plane (sce g, 2.1ay which
describes a uniform flow U (assumed to be ume-dependent) with a doublet at the
origin to simulate the cylinder, rkq clockwise-rotating vortices (called q-vortices), rkp
counter-clockwise rotating vortices (called p-vortices), and the images of all the p-and
(¢-vortices in the circle plane may be written as

) ) c? ir, ir, .o
W==UE+ =)+ =Pl ~ §) - Lo - —)
g 2n ~n Op
m mir, c? il
+ g Tn Il = Gp) = Tk Lag = —) = Daag - ¢ )
P k=127 kp N
ir 2 mor Wr 2
+ =g - =) = ¥ Sk g - Go + V g - =) (29
-1 Sq  K=120 k=1°% kq

in which Fk and Ck represent respectively the strength and location of the k-th p-
vortes, Fk and gk the strength and location of the k-th q-vortex, and ¢ the radius of
the cylinder; an overbar indicates a complex conjugate. The need for the separate
identilication of the p-and g-vortices and for the singling out of one of the vortices in
cach shear layer (namely Fop and rnq i.c., the nascent vortices ) will become apparent
later.

B.  COMPLEX VELOCITIES OF VORTICES

The convection of the vortices and the calculation of the forces acting on the
body require the evaluation of the velocities at the vortex centers. [or the velocitics in
the circle plane this reduces to subtracting from [iq. (2.5) the complex potential
corresponding to the vortex for which the velocity componcnts are to be determined
and cvaluating the derivative of the remaining terms at § = To determine the
velocities in the physical plane, however, one has to subtract (ll‘k, ..n) Ln(z = 7,) from
Eq. (2.5) or, in terms of § , the terms (sece e. g., Sarpkaya 1967, 1975)

-~
4-

r
—'2—;- Ln (g = ) + Ln(l - —) (2.6)

<
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It should be noted that the first term in Eq. (2.6) is the complex function
corresponding to the k-th vortex in the § plane. The second term appears merely as a
consequence of the transformation used. [t is easy to show that for a p-vortex Eq.
(2.6) may be reduced to (see e.g., Mostafa 1987)
_ihy (=BG, + m)
MG, + m)® + b |

(2.7)

A similar expression can be written for the q-vortex.

C. KUTTA CONDITION

The fact that the flow separates tangentially with a finite velocity at the edges of
the plate (Kutta condition) may be expressed by requiring

dwW . ,
— =90 at § =g =—-m xib (2.8)
dg
Thus, inserting Eq. (2.5) in Eq. (2.8) one has
N il"_OD [ 1 _ iroq 1 1 ,
&~y g—_iz 2 &~ S { -
t ‘;0p ' COq
+\’_’3 il"kp - 1 i _'%:il"kq 1 i
k:l n -t-C-kp _;_ k=121 gt " 5q e _.?C
t gkp -t ;kq
C2
-U({l- 5 =0 (2.9)
S

Equation (2.9) may be decomposed into two parts as
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(2.10)

where the terms containing the strength of the nascent vortices represent the velocity
induced at the tip of the camber by the nascent vortices and the term in parenthesis the
velocity at the tip due to all other vortices (and their images), the doublet at the center
of the circle in the { plane and the ambient velocity.

Equation (2.10) represents two coupled equations for the strengths and positions
of the nascent vortices. Thus, the solution of the said quantities does, in gencral,
require an iteration. However, this iteration may be avoided by noting that the
velocity induced by a nascent vortex at the opposite tip 1s verv small and certainly

negligible. Thus, Eq. (2.10) for one of the nascent vortices may be reduced to

—0q — - = + (—u +iv)) =0 (2.1

A similar expression may be written for the other nascent vortex. The use of the Kutta
condition, as expressed by Eq. (2.11). wiil be further explained following the discussion
of the tip velocity. It suffices to note that all nascent vortices satisfving the Kutta
condition do not vield either the same tip velocity or the same velocity distribution in
the neighborhood of the tip. There are, in fact, certain preferred positions for the
nascent vortices which yield physically realistic velocity distributions near the tips of
the cambered plate. These nascent vortex positions have been determined by Mostafa
(1987).

D. TIP VELOCITY

According to the Kutta condition the tangential velocity at the tip is finite. It
may be determined through the use of 'Hopital's rule.

The velocity at the tip 1s given by

AW dW dg .
—_-— = at z, =z * b (
dz  di dz ©
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The use of I'Hopital’s rule then yields,

dz
z=2,

dWl d*W ib
EEREY

Equation (2.13) vields the desired finite tip velocities.

E. TIME DEPENDENT-FORCES

The force acting on the bodyv in the physical plane may be calculated either
through the use of the pressure distribution or through the use of the rate of change of
impulse.

Bernoulli's equation for unsteady flow is given by

Lo Ly - (=2 + 2y — [ ——ds = f(t 2.1
(—--—p ) (p > 1} 5o ds = f(V (

where the indices indicate two points on the body in the physical plane. Since there is
no pressure drop across the shear laver and since the integral term in Eq. (2.14) is zero
at the tip {i.e., ds=0), one has

v 2 v 2
oy =t 2 \
f(1) 5 5 (2.1%

where V,, and V,, represent the tangental velocities on the upstream and downstream
faces of the tip. It is important to note that £ (t) in Eq. (2.15) is also the time rate of
change of circulation, i.e., the rate at which vorticity is shed into the wake from the tip
of the cambered plate.

The normalized form of Bernoulli's equation between any two points m and n

then becomes

ha e A
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The integration of the differential pressure between the upstream and downstream faces
of the camber yields the force components in the x and y directions, i.e., the drag and
lift forces.

The force acting on the body can also be calculated through the rate of change of

impulse. It is given by

m® 0 R
=) + t[l"n(zn—zm)] (2.17)

F = dnpciU (1 — z
pcL ( 3

2c

which may be written as

F cC m?

C
C,+iC, = - =2 )l - —
¢ Tt MU TR
c 0 r £ c
+ — (—E (&) — f(—= 2.18
2b (L t'c) lL’oc ¢ c ( Ck)]} (219

in which U_ is the reference velocity; l.,', the rate of deceleration of flow and z=f(§k).
i.e., the transformation given by Eq. (2.4). Equation (2.18) may also be deduced
directlv from the generalized Blasius equation. It is important to note that the force
calculated from Eq. (2.18) includes the effect of the rate of change of circulation
between two successive time steps. Thus, it may be smaller or larger (depending on the
sign of I') than the force calculated through the integration of the instantaneous
differential pressure Eq. (2.16). This is because of the fact that the instantancous
pressure depends only on the prevailing flow conditions and does not account for the
rate of change of total circulation between successive time steps. In the calculations to

follow U and ¢ are taken as unity for sake of simplicity.

F. METHOD OF CALCULATION
The methods used in the past in the determination of the vorticity flux from
sharp-edged bodies may be roughly classified into two broad categories. The first of

these involves the use of variable nascent vortex positions (see e.g., Sarpkava 1968,
O 1975) and the second, the use of fixed nascent vortex positions (see e.g., Clements
Lk 1973-1975).
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\f. In the present analysis the method of variable nascent vortex positions is used.
)
- . , : : : .
:_'.' To explain the computational details of the mcthod let us consider a particular time t
o after the start of the motion and assume t to be sufliciently large so that there are a
5% number of vortices in the wake. Then the appearance and convection of the vortices
K< proceed as follows:
% " . . -
~ (1) Select a vortex position along the radial line defined by 8 = 117.72° (see
t ‘ Mostafa 1987). The very first location is takenr = 1.1,
N (2) Calculate the strength of the nascent vortex which satisfies the Kutta
°i$ condition. This is an exact solution and requires no iteration.
.-’_\ (3) Place the nascent vortex at the corresponding points in the circle and physical
'-: planes and calculate the tip velocity.
Lol . - Yy exr .2 .
4 (4) Calculate a new nascent vortex strength from 0.5 \"2 - V,7)At where V,is the
" tip velocity and V., the average of three velocities along the radial line in the
\ physical plane, i.e., at r = 1.03, 1.10 and 115
b ,".-'
t‘ (S) Compare the newly calculated circulation with that obtained from the Kutta
N condition. If the difference between the two circulations is less than 0.001
ha procede to the next step. If the said difference is larger than 0.001, carry out
o an iteration on the radial location of the nascent vortex as many times as
o necessary until the above condition is satistied. If the circulation calculated
heS from the Kutta condition is larger than that calculated from the tip velocities,
- the vortex must be moved towards the c¢vliinder and vice versa. Also, each
i time the direction of the motion of the nascent vortex is changed (inward or
‘ . outward), the marching distance is halved in order to accelerate the
- convergence of the two circulations.
S0 (6) Calculate the velocity induced at the center of all other vortices;
‘S
ﬂ’ (7) Convect the two nascent vortices with a velocity 0.5(\-'1 + V, ) for a time
i interval At (note that the vorticity is convected with the average velocity of
‘.1' the shear layer).

A

~

(§8) Convect all other vortices for the same time-interval At using a second order
scheme given by

LX)

- Z(t+ At = z(t) + 0.5[3z(t) — z(t—Av) | At (2.19)
e

By

i in whichz = u + iv.

0y (9)  Remove the vortices from the calculation whenever they come nearer than
7 0.03 to the camber in the physical plane {(except the first 20 vortices from the

o tip):

S . . . . .

AN (10)  Coalesce the same sign vortices with a separation of less than 0.03 (in the

"‘5&' physical plane, except the first 20 vortices);

e

L
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N
D)
o |
1‘%‘. “
i
i a
1Y (11)  Calculate the tangential velocities and pressures on the inner and outer faces
':';:: of the camber. Determine the drag and lift forces through the integration of
’,\‘3.‘.‘ pressure and through the use of the rate of change of impulse. Make plots of
ot suitable variables (e.g., velocity distribution near the tip, variation of nascent
s vortex circulation with time, evolution of the wake, etc.);
K . . :
:::o' (12)  Check the flow conditions to determine the state of the calculations:
3! : , :
:::3: (a) 1£V, -V, > 0.1 repeat the foregoing steps;
N . . . .
' (b) Stop the introduction of nascent vortices if 0 < V, -V, < 0.1 and
i return to step No. 6;
- »
f;ﬁ (c) If V, > V| switch the angular positions of the nascent vortices to their
4 4.; image points. Calculate V, as the average of the three velocities, at the !
”"-" upstream side of the tip of the camber, at three radial locations (0.93, ‘l
I 0.9, and 0.83) and repeat the foregoing steps; and
R (13)  Make plots of the variations of various flow parameters (e.g., tip velocity,
;, ) nascent vortex circulation, evolution of the wake, force coefficients, etc.) and
! ' terminate the run.
¥, . . .
‘5,‘,‘::; The foregoing steps are quite general and can be used for any camber, provided
oF that the optimum points of placement of the nascent vortices are determined through
L
7 the use of a method developed by Mostafa (1987).
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N I11. DISCUSSION OF RESULTS

Ry A.  NUMERICAL AND PHYSICAL EXPERIMENTS

! The calculations were carried out for a time-dependent normalized velocity given
X bv

}
e
—

i

\ U
= I for T=—=L- <972 (3.1)
O

o

and

0.97T — 0.05T2 —3.70 (3.2)

f".|(—i

and

A= 097-0.10T (3.3
b in the interval 9.72 <T <11.48 and
" U = —=0.3423T + 0.0072T2 + 3.82 (3.9)
and

A = —0.3423 + 0.01445T (3.5)

T

SRS

in the interval 11,48 <T.<17.95. For T larger than 18, the velocity and acceleration
are zero. These velocities and accelerations correspond to that encountered in a series
g of experiments carried out in a vertical water tunnel. A detailed description of the

equipment and procedures is given by Sarpkava and Thrig (1986) and will not be

; repeated here. Evidently. the calculations can be carried out for any specified variation
" of the velocizy. For the case under consideration. the flow begins to decelerate at T#
b)
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o 4 ,

:‘_ = 9.72 and the velocity of the ambient flew reduces to zero at about T* = 18, (<ee
= Fig. 3.1)
o N The computer program provided, at times specified, the positions of all the
. vortices, the rate of shedding of vorticity from the tips of the cumber, the velocity
:-\.‘:\ distribution on the upstream and downstream faces of the camber, the diflerential
3 \-\ nressure distribution. and the force coefficients.

A Figures 3.2 through 3.5 show, at T* = U _tc = 6.00, the evoiution of the wake,
. ' the ditferential pressure distribution, and the velocities at the upstream and
" downstream faces of the camber. Figures 3.6 through 2.17 show similar plots of the
::j‘:::: wake. pressure, and velocity at larger times. These and other figures (not reproduced
"T‘f{ here for saxe of brevity) show that the characteristics of the flow develop svmmetrically

prior to the onset of deceleration (T* < 9.72) and the differential pressure is positive
evervwhere (i.e., the pressure inside the camber is larger than that outside).

Following the onset of deceleration (see e.g., Figs. 3.8, 3.12, and 3.16), the
differential pressure near the axis of the camber becomes increasingly negative. The
significance of this result is that had the model been flexible (as in the case of a
parachute) the centrai part of the camber would have collapsed as a result of the

particular deceleration it is subjecied to.

For T* larger than about 13 (for the ambient flow under consideration), the
velocities induced at the downstream edges of the camber by the large vortices moving

sidewavs and towards the camber give rise to oppositely-signed vorticity. This. in turn.,

2 leads 1o the rapid growth of the secondary vortices (see ¢.g., Figs. 3.14 and 3.15 at T*
e = 21.275). Attention is drawn to the fact that the differential pressure shown in Fig.
;_)" 3.16 1s negative over a large central portion of the camber.
ol Figure 3.18 shows the variation of the circulation of the nascent vortex with T*.
"\ As expecied. the vorticity flux is quite large at the start of the motion. It decreases
'-;‘: cradually prior to the onset of deceleration and rapidly thereafter. For T* larger than
) 4_'._ about [2, 1.e.,, when the secondary vortices come into existence, the circulation becones
S::_:: negative. [t reaches a minimum value when the ambient velocity and acceleration
:‘_:::: reduce to zero (at about T* = 18). The subsequent motion oi “he primarv and |
-"'_:; secondary vortices increases the tip velocity and hence the strength of the nascent
e vortices.  Nevertheless, the circulation remains negative, i.e., oniv the secondarv
\ l‘*\_ vortices continue to receive additional vorticity.
':‘;\:
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)\5 Figure 3.19 shows the velocities V| and V, as a function of T*. The tip velocity
;:?.ﬁ V, decreases from an initially large value of about 3 to a nearly constant value of
:3 about 1.4 just prior to the onset of deceleration. Subsequently, V, decreascs rapidly
' during the period of dJeceleration and prior to the inception of the secondary
b separation. Then V| increases to about 2 because of the backward motion of the large
; :;: vortices near the tips of the camber. Finally, V, decreases once again as the primary
;.L and secondary vortices move sidewavs and away from the tips of the camber due to
. their mutual induction (see Fig. 3.13).
r}f The variation of V, with T* is significant only during two, relatively short, time
:‘:- intervals: at the start of the motion and at the start of the deceleration. These are the
; periods during which the vorticity flux changes rapidly in order to maintain the Kutta
condition. During the remainder of time V, is negligibly small, as expected on the
' basis of the pioneering experiments of Fage and Johansen (1628) with steady flow over
__3 various tvpes of bluff bodies.
N Figure 3.20 shows the variation of the drag coeflicient as a function of T*. [t is
4 calculated through the the integration of pressure about the camber. Figure 3.20 also
}:'_:_' shows that C, rises rapidly (due to the rapid accumulation of vorticity in the growing
'. vortices) and begins to decrease as the vortices develop under the influence of a
J_ constant ambient velocitv. Then the force decreases sharply at thc onset of
’ deceleration and goes through zero near the middle of the deceleration period (1%
f [4). The force acquires its largest negative value towards the end of the deceleration
: _,.E nericd. Subsequently. the force gradually decreases to zero.
: Figure 3.21 shows a compurison of the calculated and measured drag coeflicients.
) In general the agreement between the calculated and the measured drag coeflicient is
:;._ quite good. The differences are primarily due to the fact that the diffusion of vorticity
";,: ras nct been taken into account in the numerical analysis. It is possible to introduce a
" small artificial reduction in circulation in order to bring the calculated and measured
il values into closer agreement. This has been avoided in the present analysis in order to
)': keep the discrete vortex analysis as pure and simple as possible.
x._‘ ['inally, Fig. 3.22 shows a comparison ol the normalized drag forces {or various
:: reriods of the initial steadv flow, prior to the onset of deceleration. It is clear that the
S Jrag jorces bevond the point of deceleration are nearly identical. In other words, the
;_: iorce acting on the camber is not materially affected by the duration of the ambicnt
.C-; steady Dow within the range of the paraneters encountered in the present study.
:_
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Figure 3.2 Position of vortices at T* = 6,00
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1 . . . .
N The results presented in this section have shown that the discrete vortex model
g0
R can be used with confidence to predict the evolution of the wake about a cambered
Ll plate immersed in an arbitrarv time-dependent flow. The drag coeflicients resulting

.\: from the analvsis and experiments agree reasonably well. This agreement can be

Ty ‘ : . , . : : Y
e improved with the introduction of a small circulation dissipation.

e The development of negative differential pressures near the central region of the
gt camber 1s thought to be primarily responsible for the inception of the partial collapse
e ) P p
3, . . . N

Ay of a parachute at high rates of deceleration. This phenomenon takes piace even when
v
K the total drag force acting on the parachute is still positive. The sample anaivsis
7“" - . . .

e presented herein also shows that the negative differential pressure can cover a large
gty region of the parachute and even result in negative drag. The basic idea emerging from
" .

P . .. . C . . -
},: the analysis reported herein 1s that the designs which incorporate into them the idea of
A%yl

o . . . :
DN delaving or preventing the return of the shed vortices to the canopy (c.g..porosity
" *ﬂ - ~ v ~ -
prIA management. change of deceleration history, parachute shape, dissipation and or

b 4
Wy destruction of the organized wake) will be the ones which could avoid the collzpse
\i- ’ ¢
q_;- phenomenon. Extensive analysis and small scale experiments coupled with a [ew

> g . . . . . .

-\.;:: judiciousiy selected field tests may help to arrive at practically and phenomenologically
159 _

W sound parachute designs.
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